skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyers, Cedric_J G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Highly responsive, voltage‐tunable dielectrics are essential for microwave‐telecommunication electronics. Ferroelectric/relaxor materials have been leading candidates for such functionality and have exhibited agile dielectric responses. Here, it is demonstrated that relaxor materials developed from antiferroelectrics can achieve both ultrahigh dielectric response and tunability. The system, based on alloying the archetypal antiferroelectric PbZrO3with the dielectric BaZrO3, exhibits a more complex phase evolution than that in traditional relaxors and is characterized by an unconventional multi‐phase competition between antiferroelectric, ferroelectric, and paraelectric order. This interplay of phases can greatly enhance the local heterogeneities and results in relaxor characteristics while preserving considerable polarizability. Upon studying Pb1‐xBaxZrO3forx= 0‐0.45, Pb0.65Ba0.35ZrO3is found to provide for exceptional dielectric tunability under low bias fields (≈81% at 200 kV cm−1and ≈91% at 500 kV cm−1) at 10 kHz, outcompeting most traditional relaxor ferroelectric films. This high tunability is sustained in the radio‐frequency range, resulting in a high commutation quality factor (>2000 at 1 GHz). This work highlights the phase evolution from antiferroelectrics (with lower, “positive” dielectric tunability) to relaxors (with higher, “negative” tunability), underscoring a promising approach to develop relaxors with enhanced functional capabilities and new possibilities. 
    more » « less
  2. Enhanced susceptibilities in ferroelectrics often arise near phase boundaries between competing ground states. While chemically-induced phase boundaries have enabled ultrahigh electrical and electromechanical responses in lead-based ferroelectrics, precise chemical tuning in lead-free alternatives, such as (K,Na)NbO3 thin films, remains challenging due to the high volatility of alkali metals. Here, we demonstrate strain-induced morphotropic phase boundary-like polymorphic nanodomain structures in chemically simple, lead-free, epitaxial NaNbO3 thin films. Combining ab initio simulations, thin-film epitaxy, scanning probe microscopy, synchrotron X-ray diffraction, and electron ptychography, we reveal a labyrinthine structure comprising coexisting monoclinic and bridging triclinic phases near a strain-induced phase boundary. The coexistence of energetically competing phases facilitates field-driven polarization rotation and phase transitions, giving rise to a multi-state polarization switching pathway and large enhancements in dielectric susceptibility and tunability across a broad frequency range. Our results open new possibilities for engineering lead-free thin films with enhanced functionalities for next-generation applications. 
    more » « less